

Available online at www.sciencedirect.com

Journal ofOrgano metallic 'hemistry

Journal of Organometallic Chemistry 689 (2004) 564–574

www.elsevier.com/locate/jorganchem

Organosilicon chalcogenides with trisilane units – bicyclo[3.3.1]nonanes, bicyclo[3.2.2]nonanes and spiro[4.4]nonanes

U. Herzog a^* , H. Borrmann b

^a Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Germany ^b Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, D-01187 Dresden, Germany

Received 16 June 2003; accepted 17 October 2003

Abstract

Treatment of 1,2,3-trichloropentamethyltrisilane (1) with H_2 S/NEt₃ results in the formation of a mixture of two isomers of $(Me_5Si_3)_{2}$ with a bicyclo[3.3.1]nonane (2a) and a bicyclo[3.2.2]nonane (2b) skeleton, while the reaction of 1 with Li₂Se yields one product only, (Me_5Si_3) . Se₃ (3a), with a bicyclo[3.3.1] nonane structure. Besides ¹H, ¹³C, ²⁹Si and ⁷⁷Se NMR spectroscopy 3a has also been characterized by a crystal structure analysis.

Compounds Si(SiMe₂EMR₂E)₂ (5a–h: MR₂: SiMe₂ (5a, c, d), SiPh₂ (5b), GeMe₂ (5e, f), SnMe₂ (5g, h); E = S (5a, b, e, g), Se (5c, f, h), Te (5d)) with a spiro[4.4]nonane skeleton have been obtained in mixture with varying amounts of the corresponding sixmembered rings (R_2ME) ₃ by reactions of mixtures of 1,2,2,3-tetrachlorotetramethyltrisilane (4) and diorganodichlorosilanes, $Me₂GeCl₂$ or Me₂SnCl₂, with H₂S/NEt₃, Li₂Se or L₁₂Te and have been characterized in situ by multinuclear NMR spectroscopy $(^{1}H, ^{13}C, ^{29}Si, ^{119}Sn, ^{77}Se, ^{125}Te)$ and GC-MS.

2003 Elsevier B.V. All rights reserved.

Keywords: Trisilane; Oligosilane; Silthiane; Selenium; Tellurium

1. Introduction

Reactions of organochlorosilanes with either H₂E/amine (E = S, Se) or alkaline metal chalcogenides ($M_2^L E$, E = S, Se, Te) are the most important routes to organosilicon chalcogenides.

Depending on the number of chloro substituents of the starting organosilane $R_{4-x}SiCl_x$ and the steric demand of the organic substituents R acyclic disilchalcogenides $R_3SIESiR_3$ [1,2], four or six-membered ring chalcogenides $(R_2SiE)_2$; [3–6] or silsesquichalcogenides $(RSiE_{1.5})_4$ with adamantane [7,8] or double-decker like structures [9] have been obtained.

Other approaches to compounds with Si–E bonds employ the reaction of Si–H bonds with sulfur or selenium at elevated temperatures [10–13], insertion of elemental chalcogens into Si–Si bonds of cyclosilanes [14–18] or addition of chalcogens to disilenes [19,20], tetrasilabutadienes [21] or silylenes [22–25].

Our recent studies on organosilicon chalcogenides were focussed on cyclic and polycyclic compounds with oligosilane units. Starting from methylchlorooligosilanes reactions with either H₂S/NEt₃ or Li₂E (E = S, Se, Te) led to the characterization of a variety of new cyclic and polycyclic organosilicon chalcogenides with disilane [26–31], trisilane [32–34] (and related disilylmethane [28,34]), isotetrasilane [35] (and related trisilylmethane [36]), branched hexasilane [29] as well as octasilane [37] units, see Scheme 1.

 $^{\circ}$ Corresponding author. Tel.: +49-3731-394343; fax: +49-3731-394058. E-mail address: [Uwe.Herzog@chemie.tu-freiberg.de](mail to: Uwe.Herzog@chemie.tu-freiberg.de) (U. Herzog).

Scheme 1. Polycyclic organosilicon chalcogenides with oligosilane units $(Si₂-Si₈)$.

The structures of the compounds formed as well as DFT calculations on model systems suggest that five-membered rings $(S_iS_1E_2$ or $S_iE_1E_2$ are the most stable ring size. If the formation of five-membered rings is not possible, six-membered rings are formed, whereas the formation of four-membered rings is favored by more bulky substituents. Besides information from crystal structure analyses the formation of different ring sizes can also be deduced from the 29Si NMR chemical shifts [38].

Due to the manifold possible substitution patterns chloro functionalized trisilanes offer the possibility to synthesize a large variety of new cyclic and polycyclic organosilicon chalcogenides.

So far we have investigated the nature of reaction products of methylchlorotrisilanes with either terminal chloro substituents (ClMe₂Si–SiMe₂–SiMe₂Cl [34], Cl₂MeSi–SiMe₂–SiMeCl₂ [33]) or chloro substituents at the central silicon atom (Me₃Si–SiClMe–SiMe₃ [39], Me₃Si–SiCl₂–SiMe₃ [32]) with H₂S/NEt₃ or Li₂E.

The aim of this work is to expand these investigations to trisilanes with chloro substituents at both, terminal and central silicon atoms, namely reactions of ClMe₂Si–SiClMe–SiMe₂Cl and ClMe₂Si–SiCl₂–SiMe₂Cl with either H₂S/ NEt₃ or Li₂E ($E = S$, Se, Te).

2. Results and discussion

2.1. 3,7,9-Trichalcogenahexasilabicyclo[3.3.1]nonanes and 3,6,8-trichalcogenahexasilabicyclo[3.2.2]nonanes

 $CIME_2Si-SiCIME-SiMe_2Cl$ (1) was prepared starting from 2-phenylheptamethyltrisilane by reaction with three equivalents of acetyl chloride and aluminum chloride.

The reaction of 1 with H_2S/NEt_3 may lead to two isomeric products showing either a bicyclo[3.3.1] nonane skeleton (2a) or a bicyclo[3.2.2]nonane skeleton (2b) with two trisilane units.

GC/MS as well as NMR analyses of the obtained reaction products show that both isomers are formed. Assignment of the NMR signals is possible on the basis that in $2a$ the four SiMe₂ units are equivalent resulting in one ²⁹Si NMR signal while two signals due to Sime_2 units are observed for the isomer 2b. Based on this assignment 2a is the major reaction product besides some 35% of 2b, see Fig. 1.

However, if 1 is reacted with Li₂Se in THF the bicyclo[3.3.1] nonane 3a is formed exclusively.

The NMR data of 2a–b and 3a are given in Table 1. 2a and 3a are built of two fused six-membered rings. Previous investigations on other cyclic and polycyclic organosilicon chalcogenides have shown that the formation of fivemembered rings is always accompanied by significant low field shifts of δ_{Si} while (smaller) high field shifts are observed in six-membered rings in comparison with acyclic silanes which have the same first coordination sphere at silicon. In our case a comparison of the 29Si NMR chemical shifts of 2a and 3a with those of the acyclic chalcogenobutyl substituted trisilanes BuSMe₂Si^B–Si^AMeSBu–Si^BMe₂SBu (δ_{Si} A: –24.63 ppm, B: 1.31 ppm [40]) and BuSeMe₂Si^B–Si^AMeSeBu– $Si^BMe₂SeBu (δ_{Si} A: -32.7 ppm, B: -4.5 ppm [41]) reveals that all ²⁹Si NMR signals are shifted to higher field by several$ ppm in accordance with the formation of six-membered rings.

Fig. 1. ²⁹Si NMR spectrum of a product mixture of 2a and 2b obtained by reaction of 1 with H₂S/NEt₃.

Table 1 ¹H, ¹³C, ²⁹Si and ⁷⁷Se NMR data of **2a**, **2b** and **3a**

Compound	$\delta_{\rm Se}$	${}^{1}J_{\rm SiSe}$	$\delta_{\rm Si}$	${}^{1}J_{\rm SiSi}$	$\delta_{\rm C}$	$\delta_{\rm H}$
2a S Me Me Me S. Me Me Ne- Me Me Me Me			$A: -27.50$ $B: -3.27$	78.0	-2.01 2.39/2.87 $^{1}J_{\text{SiC}}$: 46.1	0.415 0.466/0.580
2 _b Me Me Me Me S $-B-S$ Si Me. Me 51 \neg Me Me Me Me			$A: -21.14$ B: 3.88 $C: -1.33$	76.0 \rm{a} 2J: 12.2	-1.35 1.78/2.12 3.20/3.37	0.47 0.485/0.488 0.523/0.545
3a Se^{A} Me Me Me Se^B $Si^B \rightarrow Se^B$ Si^B Me Me Me Me Me Me	$A: -494$ $B: -310$	103.1 113.3	$A: -37.20$ $B: -10.31$	74.6	-2.83 2.16/2.54	0.487 0.569/0.704

^a Assignment of ¹H, ¹³C and ²⁹Si NMR signals to $Si^BMe₂$ or $Si^CMe₂$ is uncertain.

On the other hand 2b contains one six-membered ring and one seven-membered ring. This results in nonuniform changes of the ²⁹Si NMR signals in comparison with the acyclic compound BuSMe₂Si–SiMeSBu–Si-Me₂SBu. Most likely the ²⁹Si NMR signal at -1.33 ppm corresponds to the SiMe₂ units within the six-membered ring.

Besides NMR 3a could also be characterized by a crystal structure analysis. The result is shown in Fig. 2.

Important bond lengths and angles of 3a are given in Table 2. All bond lengths are in the typical ranges for single bonds. As observed in other organosilicon selenides the bond angles at the selenium atoms are smaller than the tetrahedral angle reflecting the high p character of the bond orbitals at selenium.

It is interesting to note that in the molecular structure of 3a one of the two six-membered rings adopts a chair conformation while the other one is in a boat conformation. This is also evident from the sequence of dihedral angles in both six-membered rings, see Table 3. While a chair conformation calls for the sequence $+\varphi, -\varphi, +\varphi, -\varphi, +\varphi, -\varphi,$ the sequence $+\varphi, -\varphi, 0, +\varphi, -\varphi, 0$ corresponds to an ideal boat conformation. However, in solution a fast equilibrium of the conformations of the two six-membered rings occurs resulting in one 29Si and one 77Se NMR signal for both $Me₂Si–Se–SiMe₂ units.$

Fig. 2. Molecular structure of 3a. Thermal ellipsoids are shown at the 30% probability level.

Atoms	Bond lengths (A)	Atoms	Bond angles $(°)$
$Si1-Si2$	2.355(2)	$Si1-Si2-Si3$	114.03(9)
$Si2-Si3$	2.336(2)	$Si4-Si5-Si6$	113.95(8)
$Si4-Si5$	2.335(2)	Si1–Se1–Si6	104.44(7)
$Si5-Si6$	2.363(2)	Si2–Se2–Si5	101.76(6)
Si1–Se1	2.276(2)	Si3–Se3–Si4	104.77(6)
Si2–Se2	2.299(2)	$Se1-Si1-Si2$	111.32(8)
Si3–Se3	2.292(2)	$Se2-Si2-Si1$	112.56(7)
$Si4-Se3$	2.295(2)	$Se2-Si2-Si3$	109.22(7)
$Si5 - Se2$	2.299(1)	$Se3-Si3-Si2$	110.43(7)
Si6–Se1	2.293(2)	$Se3-Si4-Si5$	110.49(7)
$Si1 - C1$	1.894(7)	$Se2-Si5-Si4$	108.32(7)
$Si1-C2$	1.842(8)	$Se2-Si5-Si6$	112.42(7)
$Si2-C3$	1.878(6)	$Se1-Si6-Si5$	111.08(7)
$Si3-C4$	1.868(7)		
$Si3-C5$	1.866(7)		
$Si4-C6$	1.867(7)		
$Si4-C7$	1.863(6)		
$Si5-C8$	1.883(6)		
$Si6-C9$	1.887(7)		
$Si6-C10$	1.861(7)		

Table 3

Torsion angles in the six-membered rings of $(Me₅Si₃)₂Se₃$ (3a)

Atoms	Torsion angle $(°)$	
$Si2-Si1-Se1-Si6$	$-58.41(7)$	
Si1–Se1–Si6–Si5	59.34(8)	
$Se1-Si6-Si5-Se2$	0.83(7)	
$Si6-Si5-Se2-Si2$	$-59.85(7)$	
Si5–Se2–Si2–Si1	61.07(7)	
$Se2-Si2-Si1-Se1$	$-2.50(8)$	
$Si2-Si3-Se3-Si4$	$-58.89(7)$	
Si3–Se3–Si4–Si5	59.88(7)	
$Se3-Si4-Si5-Se2$	$-67.85(7)$	
$Si4-Si5-Se2-Si2$	66.97(7)	
$Si5-Se2-Si2-Si3$	$-66.64(7)$	
$Se2-Si2-Si3-Se3$	66.44(7)	

2.2. 1,3,6,8-Tetrachalcogenaspiro[4.4]nonanes

In analogy to 1 ClMe₂Si–SiCl₂–SiMe₂Cl (4) was accessible by treatment of Me₃Si–SiPh₂–SiMe₃ with four equivalents of acetyl chloride and aluminum chloride.

Reaction of 4 with H₂S/NEt₃ or Li₂E, respectively, did not yield any products soluble in organic solvents like hexane or toluene.

It is known from our previous studies, that such systems always prefer the formation of products with five-membered rings. Therefore, we reacted 4 mixed with two equivalents of a diorganodichlorosilane, -germane or -stannane $(Me_2SiCl_2, Ph_2SiCl_2, Me_2GeCl_2, Me_2SnCl_2)$ with H_2S/NEt_3 or Li₂E. These reactions led to the formation of 1,3,6,8tetrachalcogenaspiro[4.4]nonanes (5a–h).

In addition to compounds $5a$ –h the six-membered ring compounds $(R_2ME)_3$ [38] are always formed as by-products in 20–50% amount, see Fig. 3.

When the ratio 4:Me₂SiCl₂ is changed to 1:1 for the preparation of 5a, the amount of the by-product (Me₂SiS)₃ is reduced to 10%, but its formation is not suppressed completely. However, compounds 5a–h have been identified unambiguously by NMR spectroscopy and in some cases by their mass spectra.

The connectivities like Si–Se–Sn can also be derived unambiguously by the observation of satellites in the NMR spectra due to $^{1}J_{\text{Sis}}$, $^{1}J_{\text{SnSe}}$ or $^{2}J_{\text{Sis}}$ as shown in Fig. 4 as one example.

Due to their molecular symmetry, all compounds 5a–h exist as a mixture of two enantiomers and additionally the organyl substituents at Si^B and Si^C (or Ge, Sn) are diastereotopic giving raise to two different ¹H and ¹³C NMR signals. The NMR data of all prepared products with a spiro[4.4]nonane skeleton (5a–h) are summarized in Table 4.

As ¹H NMR signals of $Si^{B}Me_{2}$ and $Si^{C}Me_{2}$ of 5a are very close to each other the relative assignment of the ¹H and ¹³C NMR signals was supported by a ¹H⁻¹³C heterocorrelated 2D NMR experiment, see Fig. 5. That means that the data given for $5a$ in Table 4 in the same line belong to the same CH_3 group.

Fig. 3. ²⁹Si NMR spectrum of 5a which contains some 20 mol% (Me₂SiS)₃.

Fig. 4. ²⁹Si NMR spectrum of 5h showing satellite signals due to couplings with ⁷⁷Se and ¹¹⁹Sn.

In accordance with the formation of five-membered rings in 5a–h the ²⁹Si NMR signals are shifted significantly to lower field. This is evident from a comparison of $\delta_{\rm S_i}$ in the spiro[4.4]nonanes with the values of chalcogenobutyl substituted trisilanes (Me₃Si^B)₂Si^A(EBu)₂ (E = S, δ_{Si^A} : -6.4 ppm [40]; E = Se, δ_{Si^A} : -18.8 ppm [41]) having the same first coordination sphere at Si^A or for δ_{S_i} in comparison with δ_{S_i} in the trisilanes (BuEMe₂Si^B)₂Si^AMe₂ [40,41] and (BuE- $Me₂Si^B$)₂Si^AMeEBu (see above). For E = Te no comparison can be made because acyclic tellurosubstituted trisilanes are unknown so far.

For Si^C a comparison with the ²⁹Si NMR chemical shifts of the chalcogenobutyl substituted monosilanes $Me_2Si(SBu)$ ₂ (δ_{Si} : 24.8 ppm [40]), $Ph_2Si(SBu)$ ₂ (δ_{Si} : 11.9 ppm [40]), $Me_2Si(SeBu)$ ₂ (δ_{Si} : 18.1 ppm [41]) and Me₂Si(TeBu)₂ (δ_{Si} : -24.6 ppm [42]) also reveals low field shifts due to the incorporation into five-membered rings. These low field shifts even exceed by some 5 ppm those of monosilanyl units in the simple five-membered rings $R_2Si(E)_2Si_2Me_4$ [38].

A similar observation can be made for δ_{Sn} of the tin containing compounds 5g and 5h by comparison with δ_{Sn} of the chalcogenomethyl substituted stannanes Me₂Sn (EMe)₂ (E = S, δ_{Sn} : 144 ppm [43]; E = Se, δ_{Sn} : 57 ppm [44]).

3. Experimental

3.1. NMR and GC/MS measurements

All NMR spectra were recorded on a Bruker DPX 400 in CDCl₃ solution and TMS as internal standard for ¹H, ¹³C and ²⁹Si. In order to achive a sufficient signal to noise ratio for obtaining $^1J_{\text{SiC}}$, $^1J_{\text{SiSi}}$, $^1J_{\text{SiSe}}$ or $^1J_{\text{SiTe}}$ satellites ²⁹Si INEPT spectra were also recorded. ¹¹⁹Sn, ⁷⁷Se and ¹²⁵Te NMR spectra were obtained using an IGATED pulse program.

External Me₄Sn, Ph₂Se₂ (δ_{Se} : 460 ppm [45]) and Ph₂Te₂ (δ_{Te} : 422 ppm [46]) in CDCl₃ were used as standards for 119Sn, 77Se and 125Te.

Mass spectra were measured on a Hewlett–Packard 5890 (GC)/5971 (MS, ionization energy: 70 eV, column: $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ \mu m}$, phenylmethylpolysiloxane, column temperature: 80 °C (3 min)/20 K/min/200 °C , flow: He 0.5 ml/min).

Table 4 ¹H, ¹³C, ²⁹Si, ¹¹⁹Sn, ⁷⁷Se and ¹²⁵Te NMR data of the spiro[4.4] nonanes (5a–h)

Compound	$\delta_E/\delta_{\rm Sn}$	$\delta_{\rm Si}$	$^1J_{\rm SiE}$	$^1J_{\rm SiSi}$	$\delta_{\rm C}$	$^{1}J_{\rm SiC}$	$\delta_{\rm H}$
5a Me Me Me Me $\frac{1}{\text{Si}}$ c S c Me Me Me Me		A: 6.15 B: 16.75 C: 39.48		78.2	2.21 2.48 7.20 8.93	50.6 47.6 57.5 59.1	0.660 0.549 0.679 0.695
5b Ph Me Me Ph·Si ^C S _c c-Ph Ph Me Me		A: 6.98 B: 16.54 C: 20.73			1.94/2.08 \rm{a}		0.474/0.416 a
5c Me Me Me ${\rm Si}^{\rm B}$ ${\rm Se}^{\rm B}$ Me Si^C Se ^A $Se^{A}Si^{C}Me$ Me Me Me	Se^{A} : -267 Se^{B} : -280	A: 6.82 B: 18.14 C: 30.49	145.8 113.2 $^{1}J_{\text{Sis}}$ A: 129.2 $^{1}J_{\text{Sise}^{\text{B}}}$: 129.9	70.0	1.96/2.45 8.87/10.04		0.772/0.651 0.880
5d Me Me Me Me. S_i^C Te ^A . S_i^B Te ^B Te ^B S_i^B . Te ^B Te ^B S_i^B . Te ^{AS} I ^{C. Me} Me Me Me	Te^{A} : -719 Te^{B} : -731	$A: -38.51$ B: 9.01 $C: -15.71$	346.0 396.0 $^{2}J_{\text{SiTe}^{\text{A}}}$: 30.6 321.2		1.71/3.55 10.86/11.42		0.919/0.830 1.427/1.431
5e Me Me Me Me $Ge S$ s -Ge Me Me Me Me		A: 8.61 B : 18.52		77.8	2.07/2.65 9.72/11.38	49.5 47.5	0.646/0.503 0.964/0.980
5f Me Me Me Me $\text{Ge} \xrightarrow{\text{Se}^A} \text{Si}^B$ Se^B Si^{Si^A} Se ^A Ge ^{-Me} Me Me Me	Se^{A} : -255 Se^{B} : -269	A: 8.75 B: 20.10	118.6	72.4	2.06/2.42 9.27/12.30		0.761/0.615 0.957/0.974
5g Me Me Me Si^B Me \cdot Sn \cdot S -Me $s -$ Sn Me Me Me	Sn: 205.5	A: 7.35 B: 17.79	$^{2}J_{\text{SiSn}}$: 22.3 $^{2}J_{\text{SiSn}}$: 46.5 $3J_{\text{SiSn}}$: 10.9	78.0	2.32/3.31 3.34/4.91	b $\mathbf c$	0.613/0.443 0.823/0.867
5 _h Me Me Me $Me.\frac{1}{5n}Se^{A}$ Se^B Se^{A} Sn ^{-Me} Me Me Me	Se^{A} : -388 Se^{B} : -406 Sn: 122.0	A: 4.80 B: 18.62	150.2 120.0 $^{2}J_{\text{Si}^{A}\text{Se}^{B}}$: 9.7		2.64/2.73 3.57/4.58		0.732/0.580 0.99

^a Ph: ¹³C: *i*: 135.45/135.75, *o*: 134.53/135.01, *m*: 127.75/127.87, *p*: 130.41/130.44; ¹H: *m* + *p*: 7.35, *o*: 7.67/7.74.
^{b1}J_{SnC}: 381.1.
^{c1}J_{SnC}: 401.8.
^d¹J_{SnSe}³: 1156.8, ¹J_{SnSe}⁸: 1181.3,

3.2. Crystal structure analysis

The X-ray structure analysis measurement of 3a was performed on a Rigaku AFC7 with Mercury CCD at ambient temperature. Crystal data: size: $0.18 \times 0.17 \times 0.07$ mm, formula weight: 555.76 g/mol, space group: $P2_1/c$ (monoclinic), unit cell: $a = 16.026(2)$ \AA , $b = 12.130(2)$ \AA , $c = 12.669(2)$ \AA , $\beta = 93.144(7)^\circ$, volume: 2459.1(6) \AA^3 $(Z = 4)$, density (calc.): 1.501 g cm⁻³, linear absorption coefficient: 4.770 mm⁻¹ (Mo K_a).

For data collection, unit cell refinement and data reduction of 3a the program package CRYSTAL CLEAR [47] was used. The structure was solved using direct methods (SHELXS-97 [48]), refined using least-squares-methods (SHELXL-97 [48]) and drawn using DIAMOND [49]. The ellipsoids of nonhydrogen atoms are shown at the 30% probability level. All hydrogen atoms were localized from Fourier difference maps.

Fig. 5. ¹H–¹³C heterocorrelated 2D NMR spectrum of 5a containing some 20 mol% (Me₂SiS)₃ (δ _C: 8.0 ppm, δ _H: 0.705 ppm).

Absorption correction: multi-scan, measured reflections: 18068, independent reflections: 5887, observed reflections: 4403 ($I > 2\sigma_I$), θ range: 2.11°–28.00°, completeness (θ_{max}): 99.1%, R_{int} : 0.0410, index ranges: $-19 \le h \le 21$, $-15 \le k \le 15$, $-15 \le l \le 16$, number of parameters: 182, final R₁: 0.0680 ($I > 2\sigma_I$), R₁: 0.0963 (all data), wR₂: 0.1529 ($I > 2\sigma_I$), wR₂: 0.1642 (all data), goodness of fit: 1.124, maximum/minimum residual electron density: $+1.275/-1.167$ e/ \mathring{A}^3 .

3.3. Starting materials

Sulfur, selenium, tellurium, 1.0 M Li[BEt₃H] in THF (Super Hydride®), Me₂SiCl₂, Ph₂SiCl₂, MeCOCl, AlCl₃, H₂S and NEt₃ were commercially available. (Me₃Si)₂-SiPhMe and (Me₃Si)₂SiPh₂ were prepared as described in [50,51]. THF was distilled from sodium potassium alloy prior to use. Hexane was dried over KOH. All reactions were carried out under argon applying standard Schlenk techniques.

3.4. Synthesis of $CIME_2Si-SiCIME-SiMe_2Cl$ (1) and $CIME_2Si-SiCl_2-SiMe_2Cl$ (4)

 $(Me₃Si)₂SiPhMe (8.0 g, 30 mmol)$ was dissolved in *n*-hexane (30 ml) and aluminum chloride (16 g, 120 mmol) was added. Acetyl chloride (8.5 ml, 120 mmol) was added slowly at 0 $^{\circ}$ C to the stirred reaction mixture. After stirring overnight at room temperature the upper phase was separated. After removal of the solvent in vacuo the product was distilled to yield 4.8 g (18 mmol, 60%) pure 1, b.p. 75 °C at 0.7 kPa.

1 GC/MS (m/e , relative intensity): 264/266 (M⁺, 1), 249/251 (M⁺–Me, 1), 229 (M⁺–Cl, 5), 171 (Me₃Si₂Cl₂, 3), 151 $(Me_4Si_2Cl, 18)$, 136 $(Me_3Si_2Cl, 49)$, 93 $(Me_2SiCl, 36)$, 73 $(Me_3Si, 100)$; NMR (ppm, Hz) ²⁹Si: 19.83 (SiMe₂), -0.58 $(SiMe)$, 1 J_{SiSi} : 89.3; ¹³C: 1.88/2.55 (SiMe₂), -2.22 (SiMe); ¹H: 0.645/0.652 (SiMe₂), 0.714 (SiMe).

In a similar reaction treatment of $(Me_3Si)_2SiPh_2$ (8.5 g, 26 mmol) with aluminum chloride (17.4 g, 130 mmol) and acetyl chloride (9.3 ml, 130 mmol) yielded 5.9 g (21 mmol, 79%) pure 4, b.p. 80 °C at 0.9 kPa. NMR (ppm, Hz) 29 Si: 17.68 (SiMe₂Cl), 13.40 (SiCl₂), ¹J_{SiSi}: 98.6; ¹³C: 1.30, ¹J_{SiC}: 52.2; ¹H: 0.71.

3.5. Reaction of 1 with H_2S/NEt_3 , formation of 2a and 2b

1 (0.27 g, 1.0 mmol) was dissolved in *n*-hexane (30 ml) and H₂S was bubbled through the solution while NEt₃ (0.48 ml, 3.5) mmol) was added slowly by a syringe. After stirring for 1 h the reaction mixture was filtered from precipitated ammonium salts and the solvent was removed in vacuo. The crystalline residue (0.2 g) consisted of 65% 2a besides 35% 2b based on the NMR spectra of the product.

2a/2b GC/MS: 414 (M⁺, 28), 399 (M⁺–Me, 11), 355 (Me₇Si₅S₃CH₂, 6), 341 (Me₇Si₅S₃, 9), 309 (Me₇Si₅S₂, 8), 281 $(Me_7Si_4S_2, 5)$, 249 $(Me_7Si_4S, 38)$, 234 $(Me_6Si_4S, 50)$, 191 $(Me_5Si_3S, 21)$, 131 $(Me_5Si_2, 32)$, 116 $(Me_4Si_2, 22)$, 73 $(Me_3Si$, 100) [two GC peaks with identical MS], Anal. Calc. for C₁₀H₃₀S₃Si₆ (415.06): C, 28.94; H, 7.29. Found: C, 27.83; H, 6.93%.

3.6. Reaction of 1 with Li₂Se, formation of $3a$

Selenium powder (120 mg, 1.5 mmol) was added to 3 ml of a 1.0 M Li[BEt₃H] solution in THF to form a white suspension of $Li₂Se$ in THF.

1 (0.27 g, 1.0 mmol), diluted with THF (1 ml) was slowly added to the Li₂Se suspension at 0 °C. After stirring for 30 min the solvent was removed in vacuo and the residue dissolved in n-hexane (10 ml). After filtration from precipitated LiCl and removal of the solvent colorless crystalline 3a (0.3 g, 54%) was obtained. Single crystals were grown from saturated hexane solutions.

Anal. Calc. for $C_{10}H_{30}Se_3Si_6$ (555.76): C, 21.61; H, 5.44. Found: C, 20.91; H, 5.87%.

3.7. Preparation of 1,3,6,8-tetrachalcogenaspiro [4.4] nonanes (5a–h)

In case of the sulfur compounds $(5a, 5b, 5e, 5g)$ 4 $(0.285 g, 1.0 mmol)$ and 2.0 mmol of the appropriate diorganodichloro compound (Me₂SiCl₂, Ph₂SiCl₂, Me₂GeCl₂ or Me₂SnCl₂) were dissolved in 20 ml *n*-hexane (or 15 ml toluene in case of $Me₂SnCl₂$).

H₂S was bubbled through the stirred solution while NEt₃ (1.1 ml, 8 mmol) was slowly added. After filtration from precipitated triethylammonium chloride the solvent was removed in vacuo to yield 5a, 5b, 5e or 5g, respectively, besides 20–30% of the corresponding six-membered ring compounds (R_2ME) ₃ as colorless oils.

If the starting molar ratio 4:Me₂SiCl₂ is changed to 1:1, the resulting liquid product consisted of 90% 5a besides 10% $(Me₂SiS)₃$ as checked by NMR spectroscopy.

5a GC/MS: 388 (M⁺, 14), 373 (M⁺-Me, 1), 283 (Me₅Si₄S₃, 2), 223 (Me₅Si₃S₂, 5), 208 (Me₄Si₃S₂, 62), 193 (Me₃Si₃S₂, 11), 165 (Me₃Si₂S₂, 21), 148 (Me₄Si₂S, 18), 133 (Me₃Si₂S, 21), 116 (Me₄Si₂, 5), 73 (Me₃Si, 100).

5e GC/MS: 478 (Me₈Si₂⁷²Ge⁷⁴GeS₄ (M⁺), 1), 463 (M⁺-Me, 1), 373 (Me₅Si₂⁷²Ge⁷⁴GeS₃, 0.5), 359 $(Me_4Si_2^{72}Ge^{74}GeS_3H, 1), 313 (Me_5Si^{72}Ge^{74}GeS_2, 2), 283 (Me_3Si^{72}Ge^{74}GeS_2, 1), 269 (Me_2Si^{72}Ge^{74}GeS_2H, 2), 255$ $(Me_5Si_3S_3, 6)$, 206 $(Me_4^{72}Ge^{74}Ge, 21)$, 165 $(Me_3Si_2S_2, 20)$, 119 $(Me_3^{74}Ge, 21)$, 73 $(Me_3Si, 100)$. [Isotopic patterns are in accordance with the numbers of Ge atoms.]

5g GC/MS: 555 (Me₈Si₂¹²⁰Sn¹¹⁸Sn (M⁺-Me), 20), 407 (Me₅Si₃¹²⁰SnS₄, 10), 317 (Me₃Si₂¹²⁰SnS₃, 8), 257 $(Me₃Si¹²⁰SnS₂, 11), 227 (MeSi¹²⁰SnS₂, 18), 165 (Me₃Si₂S₂ + Me₃¹²⁰Sn, 45), 73 (Me₃Si, 100).$ [Isotopic patterns are in accordance with the numbers of Sn atoms.]

In case of the selenium and tellurium compounds (5c, 5d, 5f, 5h) 4 (0.285 g, 1.0 mmol) and 2.0 mmol of the appropriate dimethyldichloro compound (Me₂SiCl₂, Me₂GeCl₂ or Me₂SnCl₂) were dissolved in THF (1 ml) and added at $0 °C$ (or $-30 °C$ in case of the tellurium compound 5d) to a Li₂Se (or Li₂Te) suspension (4.0 mmol) prepared freshly from selenium (or tellurium) powder (4.0 mmol) and 8 ml 1.0 M Li[BEt₃H] as described in Section 3.6.

Work-up as described for 3a yielded colorless to yellow (5d) oils containing the expected spiro[4.4] nonanes 5c, 5d, 5f or 5h admixed with 30–50% of the corresponding six-membered ring compounds (Me₂ME)₃ as derived from the NMR spectra.

4. Supplementary material

Crystallographic data (excluding structure factors) for 3a have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 221784. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336033 or [deposit@ccdc.cam.ac.uk\)](mail to: mailto:deposit@ccdc.cam.ac.uk).

Acknowledgements

The authors thank the 'Deutsche Forschungsgemeinschaft' and the 'Fonds der Chemischen Industrie' for financial support.

References

^[1] N.W. Mitzel, A. Schier, H. Beruda, H. Schmidbaur, Chem. Ber. 125 (1992) 1053.

^[2] J.H. So, P. Boudjouk, H.H. Hong, W.P. Weber, Inorg. Synth. 29 (1992) 30.

^[3] M.M. Millard, L.J. Pazdernik, W.F. Haddon, R.F. Lundin, J. Organomet. Chem. 52 (1973) 283.

- [4] L. Pazdernik, F. Brisse, R. Rivest, Acta Crystallogr., Sect. B 33 (1977) 1780.
- [5] P. Boudjouk, S.R. Bahr, D.P. Thompson, Organometallics 10 (1991) 778.
- [6] S.R. Bahr, P. Boudjouk, G.J. McCarthy, Chem. Mater. 4 (1992) 383.
- [7] S.R. Bahr, P. Boudjouk, Inorg. Chem. 31 (1992) 712.
- [8] J.C.J. Bart, J.J. Daly, J. Chem. Soc., Dalton Trans. (1975) 2063.
- [9] M. Unno, Y. Kawai, H. Shioyama, H. Matsumoto, Organometallics 16 (1997) 4428.
- [10] H.-G. Horn, M. Probst, Monatsh. Chem. 126 (1995) 1169.
- [11] F. Feher, R. Luepschen, Z. Naturforsch. B 26 (1971) 1191.
- [12] H. Yoshida, Y. Kabe, W. Ando, Organometallics 10 (1991) 27.
- [13] N. Choi, K. Asano, N. Sato, W. Ando, J. Organomet. Chem. 516 (1996) 155.
- [14] M. Weidenbruch, A. Schäfer, J. Organomet. Chem. 269 (1984) 231.
- [15] M. Weidenbruch, A. Grybat, W. Saak, E.-M. Peters, K. Peters, Monatsh. Chem. 130 (1999) 157.
- [16] E. Hengge, H.G. Schuster, J. Organomet. Chem. 231 (1982) C17.
- [17] C.W. Carlson, R. West, Organometallics 2 (1983) 1798.
- [18] M. Wojnowska, W. Wojnowski, R. West, J. Organomet. Chem. 199 (1980) C1.
- [19] R. West, D.J. De Young, K.J. Haller, J. Am. Chem. Soc. 107 (1985) 4942.
- [20] R.P.K. Tan, G.R. Gillette, D.R. Powell, R. West, Organometallics 10 (1991) 546.
- [21] A. Grybat, S. Boomgaarden, W. Saak, H. Marsmann, M. Weidenbruch, Angew. Chem. 111 (1999) 2161.
- [22] P. Jutzi, A. Möhrke, A. Müller, H. Bögge, Angew. Chem. 101 (1989) 1527.
- [23] B. Gehrhus, P.B. Hitchcock, M.F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 521 (1996) 211.
- [24] M. Haaf, A. Schmiedel, T.A. Schmedake, D.R. Powell, A.J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 120 (1998) 12714.
- [25] M. Weidenbruch, L. Kirmaier, E. Kroke, W. Saak, Z. Anorg. Allg. Chem. 623 (1997) 1277.
- [26] U. Herzog, U. Böhme, G. Roewer, G. Rheinwald, H. Lang, J. Organomet. Chem. 602 (2000) 193.
- [27] U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 627 (2001) 144.
- [28] U. Herzog, G. Rheinwald, J. Organomet. Chem. 628 (2001) 133.
- [29] U. Herzog, U. Böhme, E. Brendler, G. Rheinwald, J. Organomet. Chem. 630 (2001) 139.
- [30] U. Herzog, G. Rheinwald, J. Organomet. Chem. 648 (2002) 220.
- [31] U. Herzog, H. Borrmann, J. Organomet. Chem. 675 (2003) 42.
- [32] U. Herzog, H. Borrmann, Inorg. Chem. Commun. 6 (2003) 718.
- [33] U. Herzog, H. Borrmann, J. Organomet. Chem. 681 (2003) 5.
- [34] U. Herzog, U. Böhme, Silicon Chem. (2003) (submitted).
- [35] U. Herzog, G. Rheinwald, Organometallics 20 (2001) 5369.
- [36] U. Herzog, G. Rheinwald, H. Borrmann, J. Organomet. Chem. 660 (2002) 27.
- [37] U. Herzog, G. Rheinwald, Eur. J. Inorg. Chem. (2001) 3107.
- [38] U. Herzog, G. Rheinwald, J. Organomet. Chem. 627 (2001) 23.
- [39] H. Lange, U. Herzog, J. Organomet. Chem. 660 (2002) 36.
- [40] U. Herzog, G. Roewer, Main Group Metal Chem. 22 (1999) 19.
- [41] U. Herzog, J. Prakt. Chem. 342 (2000) 379.
- [42] U. Herzog, Main Group Metal Chem. 24 (2001) 31.
- [43] J.D. Kennedy, W. McFarlane, J. Chem. Soc., Perkin Trans 2 (1974) 146.
- [44] J.D. Kennedy, W. McFarlane, J. Chem. Soc., Dalton Trans. (1973) 2134.
- [45] M. Lardon, J. Am. Chem. Soc. 92 (1970) 5063.
- [46] H.C.E. McFarlane, W. McFarlane, J. Chem. Soc., Dalton Trans. (1973) 2416.
- [47] Rigaku Corp., 2000.
- [48] G.M. Sheldrick, SHELX-97 [Includes SHELXs-97, SHELXl-97, CIFTAB], SHELX-97: Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.
- [49] M. Berndt, K. Brandenburg, H. Putz, DIAMOND 2.1: Crystal Impact GbR, www.crystalimpact.de, Bonn, Germany, 1999.
- [50] U. Herzog, G. Roewer, J. Organomet. Chem. 527 (1997) 117.
- [51] U. Herzog, G. Roewer, J. Organomet. Chem. 544 (1997) 217.